Unsupervised Evaluation and Weighted Aggregation of Ranked Predictions
نویسندگان
چکیده
Learning algorithms that aggregate predictions from an ensemble of diverse base classifiers consistently outperform individual methods. Many of these strategies have been developed in a supervised setting, where the accuracy of each base classifier can be empirically measured and this information is incorporated in the training process. However, the reliance on labeled data precludes the application of ensemble methods to many real world problems where labeled data has not been curated. To this end we developed a new theoretical framework for binary classification, the Strategy for Unsupervised Multiple Method Aggregation (SUMMA), to estimate the performances of base classifiers and an optimal strategy for ensemble learning from unlabeled data.
منابع مشابه
A Framework for Unsupervised Rank Aggregation
The need to meaningfully combine sets of rankings often comes up when one deals with ranked data. Although a number of heuristic and supervised learning approaches to rank aggregation exist, they generally require either domain knowledge or supervised ranked data, both of which are expensive to acquire. To address these limitations, we propose a mathematical and algorithmic framework for learni...
متن کاملExtended and infinite ordered weighted averaging and sum operators with numerical examples
This study discusses some variants of Ordered WeightedAveraging (OWA) operators and related information aggregation methods. Indetail, we define the Extended Ordered Weighted Sum (EOWS) operator and theExtended Ordered Weighted Averaging (EOWA) operator, which are applied inscientometrics evaluation where the preference is over finitely manyrepresentative works. As...
متن کاملGGRA: a grouped gossip-based reputation aggregation algorithm
An important issue in P2P networks is the existence of malicious nodes that decreases the performance of such networks. Reputation system in which nodes are ranked based on their behavior, is one of the proposed solutions to detect and isolate malicious (low ranked) nodes. Gossip Trust is an interesting previously proposed algorithm for reputation aggregation in P2P networks based on t...
متن کاملUnsupervised manifold learning using Reciprocal kNN Graphs in image re-ranking and rank aggregation tasks
In this paper, we present an unsupervised distance learning approach for improving the effectiveness of image retrieval tasks. We propose a Reciprocal kNN Graph algorithm that considers the relationships among ranked lists in the context of a k-reciprocal neighborhood. The similarity is propagated among neighbors considering the geometry of the dataset manifold. The proposed method can be used ...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.04684 شماره
صفحات -
تاریخ انتشار 2018